If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6c^2+7c-49=0
a = 6; b = 7; c = -49;
Δ = b2-4ac
Δ = 72-4·6·(-49)
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-35}{2*6}=\frac{-42}{12} =-3+1/2 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+35}{2*6}=\frac{28}{12} =2+1/3 $
| 7v-14=0 | | (x4+5x2-36)(2x2+9x-5)=0 | | -x-8=2x+28 | | (20x+5)=24x-1 | | 42-3u=4u | | 18-15=-2r/5+7r/15 | | 1/6x+3=8 | | 3=-2-k | | 3w+8–w=4w-2(w-4) | | 13/8=52/n | | -4(2x+5)=2x+30 | | .4x+x=6000000 | | 2/3(x+27=(3x-25) | | -1=-8+x/14 | | -3(1+4.5r)=-16.5 | | -15=-2(2x-1) | | 35p=910 | | (6x7)+(6x3)=x(7+3) | | 5(x+2)-x=2x-20 | | 2x-20+90=180 | | q^2+8q+16=-2q^2+9q+436 | | 5y-6=10y+54 | | 1/6x+3=7/9x-2 | | -2+v/7=0 | | 9+3x=5-15x | | 56/g=8 | | 1-8m=-8-3(m+7) | | 2(n-3)+2=10 | | p+|10|/|-5|=18 | | 3n+6=-87 | | 12=8v-4(v+8) | | 4(x+5)=-7(x-2) |